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Oxidative rearrangement of benzyl alcohols with difluoro(p-trifluoromethylphenyl)-k -bromane
(5 � 10�2 M) in chloroform at room temperature afforded aryl fluoromethyl ethers selectively in good
yields, probably via 1,2-shift of aryl groups from benzylic carbon to oxygen atoms.

� 2009 Elsevier Ltd. All rights reserved.
Environmentally friendly hypervalent aryl-k3-iodanes (ArILL0: L,
L0 = heteroatom ligands) with two heteroatom ligands are the re-
agents of choice for oxidative transformations of various kinds of
functionalities in modern organic synthesis.1 Both heteroatom li-
gands L and L0 on iodane(III) function as leaving groups in ligand
exchange and reductive elimination steps during the oxidations.2

Primary and secondary alcohols are oxidized to aldehydes, ketones,
and/or carboxylic acids under mild conditions.1 In marked contrast,
oxidation of alcohols with hypervalent aryl-k3-bromanes remains
virtually unexplored, although their oxidizing power seems to be
greater than that of aryl-k3-iodanes.3,4 In fact, ionization potential
of bromobenzene (8.98 eV) is larger than that of iodobenzene
(8.69 eV).5 We report herein oxidation of benzyl alcohols with di-
fluoro(p-trifluoromethylphenyl)-k3-bromane (1)6 in chloroform at
room temperature under argon. Instead of simple oxidation to
benzaldehydes 3 and/or benzoic acids, the reaction afforded pre-
dominantly aryl fluoromethyl ethers 2 in good yields, probably
via oxidative fluorination with 1,2-aryl rearrangement from ben-
zylic carbon to oxygen atoms.

Aryl-k3-iodanes oxidize benzyl alcohols under mild conditions
and afford the corresponding benzaldehydes or benzoic acids
depending on the structures of k3-iodanes, additives such as RuCl3,
TEMPO, I2, and KBr, and reaction conditions.7,8 Exposure of benzyl
alcohol to a dichloromethane solution of a stoichiometric amount
of difluoro(aryl)-k3-bromane 1 (5 � 10�3 M) at room temperature
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for 3 h under argon afforded the expected benzaldehyde (3a)
(Ar = Ph) in only 2% yield (determined by 1H NMR). In this reaction,
a major product was found to be phenyl fluoromethyl ether (2a)9

(Ar = Ph, 22%) and a large amount of benzyl alcohol (50%) was
recovered unchanged, although almost all of the k3-bromane 1
was consumed and reduced predominantly to p-(trifluoro-
methyl)bromobenzene (91%). Very interestingly, the k3-bromane-
induced oxidative rearrangement of benzyl alcohol to fluoromethyl
ether 2a is highly dependent on the concentration of the k3-bro-
mane 1, as shown in Figure 1. Thus, use of 5 � 10-2 M solution of
1 in dichloromethane dramatically increased the yield of fluorom-
ethyl ether 2a up to 69%. Further increases in the concentration of
1 decreased the yields of 2a to around 50% (Scheme 1).

Solvents have a large effect on the oxidative rearrangement. Di-
fluoro-k3-bromane 1 readily dissolves in dichloromethane, while it
is sparingly soluble in hexane and carbon tetrachloride. The latter
solvents gave decreased yields of fluoromethyl ether 2a (22–48%,
Table 1, entries 1 and 6). No reaction was observed in more polar
MeCN, and both k3-bromane 1 and benzyl alcohol were recovered
unchanged (entry 8). The nucleophilic solvent MeCN with a Gut-
mann donor number DN of 14.110 probably coordinates to the pos-
itively charged bromine(III) atom of k3-bromane 1 with formation
of a square planar tetracoordinated species and stabilizes it, which,
in turn, will decrease the reactivity of 1.11 Use of chloroform affor-
ded a moderate yield of 2a (52%); however, the competing simple
oxidation to benzaldehyde (3a) was almost inhibited to less than
1%. Finally, we found that the use of 1.4 equiv of 1 (5 � 10�2 M)
in chloroform afforded a high yield of 2a (80%, entry 5).



Table 2
Oxidation of substituted benzyl alcohols with difluoro-k3-bromane 1a

Entry Substrate Yieldb (%)

2 3

1 p-MeOC6H4CH2OH 2b 7 3b —
2 p-MeC6H4CH2OH 2c 17 3c —
3 p-t-BuC6H4CH2OH 2d 66 3d <1
4 p-FC6H4CH2OH 2e 68 3e —
5 o-ClC6H4CH2OH 2f 66 3f —
6 p-ClC6H4CH2OH 2g 90 3g —
7 p-BrC6H4CH2OH 2h 65 3h <1
8 p-IC6H4CH2OH 2i 67 3i 3
9 p-MeO2CC6H4CH2OH 2j 90 3j —

10 p-CF3C6H4CH2OH 2k 63 3k 13
11 p-NCC6H4CH2OH 2l 60 3l 8
12 p-NO2C6H4CH2OH 2m 44 3m 26
13 p-ClC6H4CH2OTMS 2g 68 3g 2

a Conditions: bromane 1 (5 � 10�2 M, 1.4 equiv)/chloroform/room temperature/
2 h/Ar.

b 1H NMR yields.

Table 1
Oxidation of benzyl alcohol with difluoro-k3-bromane 1a

Entry Bromane 1 (equiv) Solvent Yieldb (%)

2a 3a

1 1 Hexane 22 5
2 1 ClCH2CH2Cl 44 6
3 1 CH2Cl2 69 4
4 1 CHCl3 52 <1c

5 1.4 CHCl3 80 <1
6 1 CCl4 48 4
7 1 Et2O 31 12
8 1 MeCN — —c,d

9 1.4e CHCl3 — 4c

a Conditions: bromane 1 (5 � 10�2 M)/room temperature/3 h/Ar.
b 1H NMR yields.
c 44% (entry 4), 99% (entry 8), and 37% (entry 9) of PhCH2OH were recovered

unchanged.
d Difluoro-k3-bromane 1 (94%) was recovered unchanged.
e Difluoro-k3-iodane (p-CF3C6H4IF2), instead of 1, was used.

Figure 1. Concentration dependence for oxidative rearrangement of benzyl alcohol
with difluoro-k3-bromane 1 in dichloromethane at room temperature for 3 h under
argon: (d) 2a and (s) 3a.
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Oxidation power of the k3-bromane 1 was compared with that
of the k3-iodane. Thus, when benzyl alcohol was treated with di-
fluoro(p-trifluoromethylphenyl)-k3-iodane12 (1.4 equiv) in chloro-
form at room temperature for 3 h, formation of only a small
amount of aldehyde 3a (4%) was detected and large amounts of
the alcohol (37%) and the k3-iodane (46%) were recovered. These
results clearly reveal higher reactivity of the hypervalent di-
fluoro-k3-bromane 1 in the oxidation of benzyl alcohol (compare
entries 5 and 9).

Results for oxidation of substituted benzyl alcohols with the di-
fluoro-k3-bromane 1 (1.4 equiv) in a chloroform solution are sum-
marized in Table 2. Benzyl alcohols with electron-donating p-
methoxy and p-methyl groups gave a complex mixture of products
containing a small amount of aryl fluoromethyl ethers 2b and 2c. A
rapid color change from colorless to brown and then to bright yel-
low on mixing these alcohols with the k3-bromane 1 in chloroform
was observed, probably suggesting intervention of some electron
transfer process. Interestingly, p-tert-butylbenzyl alcohol showed
no such color change and afforded p-tert-butylphenyl fluoromethyl
ether (2d) (66%) selectively (entry 3). Benzyl alcohols with moder-
ately electron-withdrawing substituents such as p-fluoro, p-chloro,
p-bromo, p-iodo, and p-methoxycarbonyl groups showed a high
tendency toward the oxidative rearrangement rather than a simple
oxidation to benzaldehydes 3, yielding fluoromethyl ethers 2 in
good to high yields (65–90%).13 On the other hand, introduction
of a highly electron-withdrawing p-trifluoromethyl group resulted
in the formation of a considerable amount of byproduct and affor-
ded a mixture of fluoromethyl ether 2k (63%) and benzaldehyde 3k
(13%). The presence of a more powerful p-nitro group accelerated
the simple oxidation at the expense of the desired oxidative
rearrangement and produced 2m and 3m in 44 and 26% yields,
respectively (entry 12). In addition to benzyl alcohols, benzyl tri-
methylsilyl ethers also undergo the oxidation to fluoromethyl
ethers 2 (entry 13).

Scheme 2 depicts a reaction pathway for the formation of aryl
fluoromethyl ethers 2 and benzaldehydes 3, which involves initial
generation of alkoxy(aryl)(fluoro)-k3-bromane intermediates 4 via
Br

CF3

ArCH2OH + ArOCH2F + ArCHO

1 2 3

FF
p-CF3C6H4Br

Scheme 1. Oxidation of benzyl alcohols with difluoro-k3-bromane 1.
a facile ligand exchange of fluorine atom on hypervalent bro-
mane(III) by a benzyl alcohol.14 Leaving group ability of aryl-k3-
bromanyl groups is greater than that of aryl-k3-iodanyl groups,
so-called hyper-leaving groups.15 Therefore, it is likely that the
reductive elimination of alkoxy-k3-bromanes 4 produces benzyl-
oxy cations 516 with the concomitant liberation of p-(trifluoro-
methyl)bromobenzene (path a). Fluoromethyl ethers 2 will be
produced from the cations 5 via intervention of spirobenzenium
ions 6 and the subsequent nucleophilic ring-opening with fluoride
anion.17 Alternatively, the alkoxybromane 4 can generate benzeni-
um ions 6 directly in a concerted manner (path b).18 Both path-
ways a and b result in 1,2-shift of aryl groups of benzyl alcohols
from the carbon to the oxygen atoms. On the other hand, compet-
ing b-elimination process of 4 involving a benzylic hydrogen
abstraction will produce benzaldehydes 3 directly (path c).

As mentioned above, compared to the oxidation of benzyl alco-
hol in dichloromethane, 1,2-dichloroethane, and carbon tetrachlo-
ride, use of chloroform as a solvent diminished the relative ratios of
simple oxidation to benzaldehyde (3a) versus 1,2-rearrangement
yielding fluoromethyl ether 2a to a negligible extent (Table 1, en-
tries 2–6). Chloroform with a large solvent acceptor number (AN)
of 23.119 will more efficiently solvate and stabilize an electron-rich
species such as fluoride anion, which probably participates in ben-
zylic hydrogen abstraction of alkoxy-k3-bromanes 4 during the b-
elimination. In other words, solvent hydrogen bonding toward
fluoride anion is more effective in chloroform solution than in
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Scheme 2. Reaction pathway for oxidation of benzyl alcohols with 1.

Figure 2. Concentration dependence for decomposition of difluoro-k3-bromane 1
in CD2Cl2 at 23 �C under argon (determined by 1H NMR): (a) 5 � 10�3 M and (b)
5 � 10�2 M. The inset shows details of initial decomposition.
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dichloromethane solution, because the former is more acidic with
an estimated pKa value of ca. 24.20 Thus, the rate of b-elimination
process (path c), compared to that of 1,2-rearrangement pathways
(paths a and b), will be slowed down more remarkably in chloro-
form solution.

The difluoro-k3-bromane 1 is a colorless solid and can be kept
for several months at �30 �C under argon without any decomposi-
tion.6 In CD2Cl2 solution at 23 �C, however, the bromane 1 rapidly
decomposes at a low concentration of 5 � 10�3 M and produces p-
(trifluoromethyl)bromobenzene quantitatively with a half-life
time (t1/2) of approximately 3 min (Fig. 2a). This facile decomposi-
tion of the bromane 1 to bromobenzene will compete with the oxi-
dative rearrangement of benzyl alcohol, which accounts nicely for
a moderate yield formation of phenyl fluoromethyl ether (2a) at
the low concentration of 1 (Fig. 1). Very interestingly, the rate of
decomposition of the bromane 1 to bromobenzene seems to de-
pend on the concentration in solution: thus, the increased concen-
tration of 1 to 5 � 10�2 M in CD2Cl2 substantially decreased the
rate of its decomposition and a half-life time of the bromane 1
was changed to more than one hour (Fig. 2b). This decreased
decomposition rate of the bromane 1 will result in the increased
yield of 2a up to 69% (Fig. 1).

Solid state structure of difluoro(aryl)-k3-bromanes has never
been reported; however, bromine trifluoride (BrF3) was shown to
be a pseudo trigonal bipyramidal molecule.21 The single crystal
X-ray diffraction revealed a polymeric chain structure through an
intermolecular hypervalent Br(III)� � �F contact with a planar tetra-
coordinated geometry around bromane(III).22 Similar intermolecu-
lar contacts of I(III)� � �F bonding with formation of zigzag chain
polymers were observed in the solid state structures of difluoro-
k3-iodanes such as CF3IF2 and C6F5IF2.23 If these polymeric (or olig-
omeric) structures are adopted in the solid state structure of the
difluoro-k3-bromane 1 and maintained even in solution to some
extent, its stability in solution may depend on the concentrations.

We have uncovered the greater power of the difluoro-k3-bro-
mane 1 in the oxidation of benzyl alcohols, compared with that
of difluoro-k3-iodane analogue. The reaction affords aryl monoflu-
oromethyl ethers 2 in good yields, probably via oxidative fluorina-
tion with 1,2-aryl migration from benzylic carbon to oxygen atoms.
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